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We consider stochastic processes, S t — (S tx: x ¥ Zd) ¥SZd

0 with S0 finite, in which
spin flips (i.e., changes of S tx) do not raise the energy. We extend earlier results
of Nanda–Newman–Stein that each site x has almost surely only finitely many
flips that strictly lower the energy and thus that in models without zero-energy
flips there is convergence to an absorbing state. In particular, the assumption of
finite mean energy density can be eliminated by constructing a percolation-
theoretic Lyapunov function density as a substitute for the mean energy density.
Our results apply to random energy functions with a translation-invariant dis-
tribution and to quite general (not necessarily Markovian) dynamics.
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1. INTRODUCTION AND MAIN RESULTS

In the statistical physics of Ising models, Glauber dynamics refers to
Markov processes whose transitions are the flips of single spin variables
and are such that the Gibbs distribution at a given nonzero temperature
is invariant. The zero-temperature limit of these processes are interacting
particle systems in which each transition lowers or leaves unchanged the
total energy of the system. In ref. 1, Nanda, Newman, and Stein studied
these zero-temperature processes for (homogeneous and) disordered Ising
models on Zd (and other lattices) with Hamiltonian (i.e., total energy)

H(S)= C
x ¥ Zd
Vx({Sz: ||z−x|| [ 1}), (1)



where

Vx=−
1
2 C
z: ||z−x||=1

J{x, z}SxSz (2)

and || · || denotes Euclidean norm. The Sx’s were ±1 valued and the J{x, z}’s
were i.i.d. random variables (that are fixed as the dynamics runs its course).
The initial spin configuration S0 — (S0x: x ¥ Zd) was chosen from (i.i.d.)
product measure (with P(S0x=+1)=l) and the continuous-time Markov
process S t had each site x flip with rate either 1, 1/2 or 0 depending on
whether the energy change DxH caused by the flip is < 0, =0, or > 0.
We remark that throughout this paper sums over Zd as in (1) are formal
expressions while quantities such as DxH are well-defined and given by
finite sums.
Under the assumption that

E |J{x, z} | <., (3)

it was proved in ref. 1 that a.s. (almost surely; i.e., with probability one)
each site x has only finitely many flips with DxH < 0. As a corollary, it
follows that if the common distribution of the J{x, z}’s is continuous (so that
there is zero probability for the J{x, z}’s to provide for a flip with DxH=0),
then a.s. each site flips only finitely many times and so a.s. S t converges
(coordinatewise) to some S. (an absorbing or metastable state). It was also
shown in ref. 1 that the finite mean energy density assumption (3) was not
needed for d=1 and could sometimes be avoided for d \ 2. Our first main
result is the next theorem which entirely eliminates the assumption (3) in
any dimension. The proof, in which the mean energy density is replaced by
a percolation-theoretic Lyapunov function, is perhaps as interesting as the
theorem itself. We slightly generalize the form of (2) since it is basically
cost-free.

Theorem 1. Let S t be the stochastic Ising model just described,
except that (2) is generalized to

Vx=−hxSx−
1
2 C
z: ||z−x||=1

J{x, z}SxSz, (4)

with the J{x, z}’s and hx’s i.i.d. (and independent of each other and with
common distributions F1 and F2). For any F1, F2 and any dimension d, a.s.
each site x has only finitely many flips with DxH ] 0. If either F1 or F2 is
continuous, then a.s. each site has only finitely many flips of any kind.
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The last claim of Theorem 1 follows because the energy change
DxH(S) caused by Sx Q −Sx (coming from the changes in all the Vy’s with
||y−x|| [ 1) is

DxH=2hxSx+2 C
z: ||z−x||=1

J{x, z}SxSz, (5)

and, for F1 or F2 continuous, this has zero probability of vanishing (for
any of the 22d+1 possible sign-assignments to Sx and the Sz’s). The proof of
the main part of Theorem 1 is given in Section 2 later as a corollary of a
more general result, Theorem 2.

Remark 1.1. On Zd, with hx — 0 and l=1/2, the pair (d, F1) is said
to be of type I (resp.,F) if a.s. each site flips infinitely (resp., only finitely)
many times (see ref. 2). It was shown in ref. 2 that (d=2, F1=adJ+
(1−a) d−J) with J > 0 and 0 < a < 1 is of (mixed) type M, which means
that a.s. some sites flip infinitely many times and some only finitely many.
Combining all the previously known results (see refs. 1 and 2) with
Theorem 1, one finds that all (d, F1) have now been classified as type I,F
or M with the exception of the important cases where d \ 3 and F1=
adJ+(1−a) d−J with J > 0 and 0 [ a [ 1. These include the homogeneous
ferromagnet (a=1) and antiferromagnet (a=0), which can easily be seen
to be of the same type, and the ±J spin glass (a=1/2).

Theorem 1 can immediately be extended in a number of directions.
For example, the initial distribution of S0 can be any translation invariant
measure and hx need not be independent of the J{x, z}’s. Such cases will be
covered by Theorem 2 later, which extends Theorem 1 in three basic but
far-reaching ways:

(A) the spin variables Sx need not be ±1 but can take their values
from some arbitrary finite setS0;

(B) the stochastic process (S t: t \ 0) (including the initial distribution
for S0) can be much more general than the specific zero-temperature
Glauber dynamics Markov process with i.i.d. S0x’s treated in Theorem 1;
e.g., it need not even be a Markov process;

(C) the random Vx’s of the Hamiltonian need not come from i.i.d.
couplings but only need have a translation-invariant distribution.

We give a few natural examples of such extensions after Theorem 2
later. Other extensions of Theorem 1 are discussed in a series of remarks at
the end of this section of the paper.
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Needless to say, Theorem 2 can also be extended. One extension, to
finite-range rather than only nearest-neighbor Hamiltonians, is described
in Remark 1.5 later. Other extensions, that we will not discuss, are to
random lattices/graphs and to dynamics where multiple spin changes occur
simultaneously (including continuous time Kawasaki dynamics and some
discrete-time synchronous dynamics).
There are four main assumptions on the stochastic process Ŝ — (S t:

t \ 0) and random HamiltonianH (determined by (Vx: x [ 0)) which lead
to the conclusion that a.s. each site x flips (i.e., Sx changes its value) with
DxH ] 0 only finitely many times. The first three of these are fairly natural
and unobjectionable: (1) statistical translational invariance, (2) single spin
flip dynamics and (3) zero-temperature dynamics—i.e., DxH [ 0. The
fourth assumption is that either of two hypothesis on H be valid: (4a)
finite mean energy density or (4b) a somewhat technical looking large
deviation bound on a (dependent) percolation model related to H. This
assumption, which is the price we pay for the generality of the theorem, did
not appear in Theorem 1 because there the i.i.d. J{x, z}’s result in a standard
independent bond percolation model and the large deviation bound follows
from standard results.
The finite mean energy density hypothesis 4a is the analogue of (3), the

finite mean coupling hypothesis of ref. 1, and the proof of Theorem 2 in
that case is basically taken from ref. 1. On the other hand, the proof under
the percolation hypothesis 4b involves a novel extension of the methods of
ref. 1, whereby a percolation-theoretic Lyapunov function, with finite mean
density, is constructed as a replacement for the mean energy density. We
state the percolation hypothesis and Theorem 2 in the context of nearest-
neighbor Hamiltonians, where each Vx is a function only of {Sz: ||z−x||
[ 1}; this nearest-neighbor restriction, not needed at all with finite mean
energy density, is included to simplify the statement and use of the perco-
lation hypothesis (see Remark 1.5).

The Strong Percolation Hypothesis. A slightly stronger than nec-
essary (see Remark 1.6) version of the percolation hypothesis is as follows.
Writing Vy(Sx=g) to denote the function Vy of {Sz: ||z−y|| [ 1, z ] x}
when Sx is set to the value g, we define for ||x−y||=1 the random variable

Kx, y= max
{Sz: ||z−y|| [ 1, z ] x}

max
g, gŒ
{|Vy(Sx=g)−Vy(Sx=gŒ)|} (6)

and

Kg
{x, y}=max{Kx, y, Ky, x}. (7)
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For each fixed K > 0, we consider the (dependent) percolation model in
which nearest-neighbor bonds {x, y} with ||x−y||=1 are said to be open
if Kg

{x, y} > K and otherwise closed and denote by C
K
x the open cluster

containing the site x and by |CKx | the number of sites in C
K
x . We will say

that H satisfies the strong percolation hypothesis if there exist constants
MK <. and l(K) \ 0 with limKQ. l(K)=. such that for all x ¥ Zd

P(|CKx | > n) [MKe−l(K) n. (8)

In Theorem 2 we consider a stochastic process Ŝ — (S t: t \ 0) taking
values inSZd

0 , whereS0 is finite, and a random Hamiltonian of the form

H(S)= C
x ¥ Zd
Vx({Sz: ||z−x|| [ 1}) (9)

that satisfy the following three hypotheses:

1. Translation invariance. There is translation invariance for the
joint distribution of (Ŝ, (Vx: x ¥ Zd)).

2. Single spin flip dynamics. Almost surely, for each x, Sx changes
only finitely many time in each bounded interval of time [0, T] and only a
single site changes each time.

3. Zero-temperature dynamics. Every spin change either lowers the
total energy or leaves it unchanged.

Theorem 2. Suppose that the stochastic process Ŝ and (nearest-
neighbor) Hamiltonian on Zd satisfy hypotheses 1, 2, and 3 above. If in
addition either

4a. E(max{Sz: ||z−x|| [ 1} |Vx({Sz: ||z−x|| [ 1})|) <.

or

4b. the strong percolation hypothesis is valid,

then almost surely every site has only finitely many changes that strictly
lower the energy.

The proof of Theorem 2 is given in Section 2 later. Meanwhile, here
are a few examples to show that the extensions of Theorem 2 beyond
Theorem 1 allow one to deal with many interesting models.

A. More than two states. Potts models have S0={1,..., Q} and
replace the Ising interaction form SxSy of (2) with a Kronecker delta
interaction dSx, Sy . Continuous-time Markovian dynamics may be described
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in terms of rate one Poisson ‘‘update’’ clocks at each site x and replacement
of Sx=g by Sx=gŒ with probability p(g, gŒ) when the clock rings. In
these models, the zero-temperature dynamics used is often not the one of
Theorem 1, where p(g, gŒ)=1 or 1/2 or 0 according to whether DxH is
< 0 or =0 or > 0, but rather (see, e.g., ref. 3) one corresponding to
uniform choice from among those gŒ (including gŒ=g) that minimize DxH.
Of course Theorem 2 only requires that p(g, gŒ)=0 if DxH > 0.

B. Zero-temperature non-Markovian processes. We modify the pre-
vious Potts models by changing the rule to update a site. Every time t that
a site is updated it takes a value gŒ from all those that do not increase the
energy, with probability depending on the fractions of time in [0, t] spent
in those values. This process is evidently not Markovian in general because
the update depends on the history.

C. Non-i.i.d. disorder. In statistical mechanics there are many models
in which random couplings are not independent. For example the (nearest-
neighbor) Hopfield model on Zd (see, e.g., ref. 4) withM patterns has

J{x, y}=C
M

i=1
t (i)x t

(i)
y ,

where the t (i)x ’s are i.i.d. ±1 random variables with a symmetric Bernoulli
distribution. We also note that the Vx’s of (9) need not be sums of two-
body interactions of the form V{x, z}(Sx, Sz) but can have quite general multi-
body dependence.
We conclude this section with a number of remarks about Theorems 1

and 2.

Remark 1.2. As in ref. 1, the proof and conclusions of Theorem 1
extend to models on much more general lattices and graphs than Zd. These
include not only regular d-dimensional lattices (such as the two-dimen-
sional hexagonal lattice) but (as in ref. 5) also homogeneous trees and
Cayley graphs of finitely generated groups.

Remark 1.3. There are many interesting cases where the final
conclusion of Theorem 1 (that there is a.s. convergence to an absorbing
state) applies because DxH(S) ] 0 a.s. for any S, but for a different reason
than continuity of F1 or F2. For example, this is the case when J{x, z} —
J > 0 and hx — 0 on graphs where every site has an odd number of neigh-
bors (such as the hexagonal lattice). It is also so on Zd when J{x, z} — J > 0
and hx — h provided h/J ¨ {−2d, −2d+2,..., 2d−2, 2d}.
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Remark 1.4. There are also very interesting cases where S tQ S.

a.s. even though zero-energy flips do occur. This has been proved (6) (with
S. — 1 or — −1) on Zd with d \ 2 when J{x, z} — J > 0 and hx — 0 providing
l — P(S0x=+1) is close enough to 1 or 0. When l=1/2, it has been
proved for d=1 and d=2 (see, resp., refs. 7 and 1) that a.s. each site flips
infinitely many times. Some other results about ‘‘local recurrence’’ on Z2

may be found in ref. 8.

Remark 1.5. The nearest-neighbor assumption on H can be com-
pletely relaxed under a finite mean energy density hypothesis like 4a.
Without finite mean energy density, one can also certainly extend the per-
colation hypothesis to cover finite range interactions, at the cost of some
complications. It also appears that one can do a percolation Lyapunov
function approach beyond the case of strictly finite range, but we have not
investigated that thoroughly.

Remark 1.6. The proof of Theorem 2 makes clear that the part of
the percolation hypothesis that l(K)Q. as KQ. can be weakened to
limKQ. l(K) > (2d+1) ln |S0 |.

Remark 1.7. We can weaken hypothesis 1 of invariance under
all Zd-translations to invariance under a subgroup of Zd, such as
k1Z× · · · ×kdZ. To see that this follows from Theorem 2 itself, note that by
using k1×k2×...×kd block variables, we can obtain a new Zd-lattice and a
new spaceS0 of spin values such that the new Vx’s are translation invariant.
We stress that the finite mean energy or percolation hypothesis must be
verified for the new Vx’s.

2. PROOFS

We begin by proving Theorem 1 as a corollary of Theorem 2 since a
direct proof of Theorem 1 does not provide much simplification. Then we
prove Theorem 2 in two parts corresponding respectively to hypotheses 4a
and 4b.

Proof of Theorem 1. Hypotheses 1, 2, and 3 of Theorem 2 are
obviously valid under the assumptions of Theorem 1 and thus it suffices
to show that the strong percolation hypothesis 4b is also valid. Since
Kg
{x, y}=|J{x, y} |, we see that the percolation model of 4b is simply indepen-
dent bond percolation of density p=P(|J{x, y} | > K). Since pQ 0 as KQ.,
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the large deviation bound (8) follows from standard percolation results
(see, e.g., Section 6.3 of ref. 9) and it is fairly easy to show that l(K)Q.
as KQ. (pQ 0) by, e.g., lattice animal considerations (see, e.g., Section
4.2 of ref. 9).

Proof of Theorem 2 (with Finite Mean Energy Density). In this
case we can essentially copy the corresponding arguments in ref. 1 (see
Theorem 3 there). We present them here since the proof under the strong
percolation hypothesis is an extension of these arguments. Let

E(t)=E(Vx(S t)), (10)

which, by translation-invariance, is independent of x, and by the finite
mean energy density hypothesis 4a is in some bounded interval [−E0, E0]
for all t \ 0. Let D txVy denote the sum of all changes in Vy(S

tŒ) caused by
flips of S tŒx (from any value g to any other value gŒ in S0) for tŒ ¥ (0, t).
Thus the total energy change caused by such flips is

D txH= C
y: ||y−x|| [ 1

D txVy; (11)

by the zero-temperature hypothesis 3, D txH [ 0. We denote by N t
x(e) the

number of those flips for which DxH [ − e.
We will show that for any e > 0,

E(t)−E(0)=E(D txH) [ − eE(N
t
x(e)). (12)

The inequality is obvious while the equality can be derived as follows (by
means of the ‘‘Mass Transport Principle’’ as in ref. 5): Utilizing (10) and

Vx(S t)−Vx(S0)= C
y: ||x−y|| [ 1

D tyVx, (13)

taking expectations and using translation invariance with the origin of Zd

denoted O, and finally using (11), we have

E(t)−E(0)= C
y: ||x−y|| [ 1

E(D tyVx)= C
y: ||x−y|| [ 1

E(D tOVx−y)

= C
y: ||x−y|| [ 1

E(D tOVy−x)= C
y: ||x−y|| [ 1

E(D txVy)

=E(D txH). (14)
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Since D txH [ 0 and E(t)−E(0) \ −2E0, we may let tQ. in (12) to
conclude that

E(N.

x (e)) [ e
−1 |E(.)−E(0)| [ 2e−1E0, (15)

so that for every x, and every e > 0, a.s. N.

x (e) <.. The conclusion of
Theorem 2 is that a.s. N.

x (0+) <.. To see that this follows from
N.

x (e) <. for every (deterministic) e > 0, note that N
.

x (0+)=N.

x (ēx)
where ēx is the random variable,

ēx=min{f(g, gŒ, (Sy: ||y−x||=1)): g, gŒ, Sy are ±1 and f > 0} (16)

with

f(g, gŒ, (Sy: ||y−x||=1))= C
y: ||y−x|| [ 1

(Vy(Sx=g)−Vy(Sx=gŒ)). (17)

Since ēx is the minimum of finitely many strictly positive random variables
(and in case f=0 above for all choices of g, gŒ, Sy, we set ēx=1), we have
P(ēx > 0)=1 which completes the proof.

Proof of Theorem 2 (with Strong Percolation Hypothesis Valid).
In the absence of finite mean energy density, our strategy is to replace
Vx(S t) in (10) with a different and percolation-theoretic function L1x(S t),
defined in a translation invariant way, so that L(t)=E(L1x(S t)) can serve
as a Lyapunov function density in place of the mean energy density E(t).
Like in the finite mean energy density proof, for this to work, it suffices for
L(t) to satisfy:

(i) L(t) ¥ [−L0, L0] for all t \ 0 with 0 < L0 <., and

(ii) L(t) is nonincreasing and L(t)−L(0) [ − eE(N t
x(e)) for all

small e > 0 and arbitrary t \ 0.

HereN t
x(e) is defined, as before, in terms of energy changes DxH (and not

in terms of Lyapunov function changes).
The Lyapunov density L1x(S), and the (formal) Lyapunov function

L=;x ¥ Zd L1x, will not have only nearest-neighbor dependence but in fact
will depend on {Sz: z ¥ C̄

K
x } for an appropriately chosen K, where C̄

K
x is the

‘‘closure’’ of the percolation cluster CKx that contains x. The percolation
clusters C for a given K were defined in Sec. 1 as part of the strong perco-
lation hypothesis and the closure C̄ of C is defined as {y: ||y−x|| [ 1 for
some x ¥ C}. To obtain (i) and (ii), we claim that it suffices if

(iŒ) E(max
S
|L1x(S)|) <., (18)
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and for any flip of Sx with DxH [ 0, the corresponding change DxL of the
Lyapunov functionL satisfies, for some deterministic K̄ > 0,

(iiŒ) DxL [ ˛DxH, if −K̄ [ DxH [ 0,

−K̄, if DxH [ −K̄.
(19)

Condition (i) is then immediate from (iŒ) while (ii) follows from the
extension of (12) to D txL, the total change in L caused by flips of S tŒx for
tŒ ¥ (0, t):

L(t)−L(0)=E(D txL) [ − eE(N
t
x(e)) for e [ K̄. (20)

In (20), the inequality is a consequence of (iiŒ) and the equality follows
from translation invariance, exactly as for E(t)−E(0) (see (14)). To
complete the proof, we need to construct L1x (in a translation invariant
way) so that (iŒ) and (iiŒ) are valid.
To begin that construction, we choose K sufficiently large such that

all clusters CKy are finite a.s.; this can be done by the strong percolation
hypothesis. Then we may rewrite the Hamiltonian (9) as

H(S)= C
y ¥ Zd
|CKy |

−1 VCKy (S)= C
C ¥ C

K
VC(S), (21)

where

VC(S)=C
z ¥ C
Vz(S) (22)

and CK denotes the collection of all clusters.
Our Lyapunov function densityL1y will be of the form

L1y=|C
K
y |
−1L2CKy , (23)

where L2C is closely related to VC, but with modifications made to yield
both (iŒ) and (iiŒ). Like VC, L2C(S) depends only on {Sz: z ¥ C̄} and thus is
a function on the finite space S C̄

0 . Let S(1),..., S(MC), with MC=|S0 | |C̄|, be
the spin configurations in this finite space ordered so that V(i) — VC(S(i))
has V(1) [V(2) [ · · · [V(MC). Then we define L

2
C on this space by setting

L2C(S(1))=0 and

L2C(S(i+1))=C
i

j=1
min(V(j+1)−V(j), 4dK). (24)
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This definition gives an L2C that is a strictly increasing function of VC(S) in
such a way that the following two properties are valid:

(iœ) 0 [L2C [ 4dK |S0 | |C̄| (25)

and, for any S, SŒ, the difference DL2C —L2C(SŒ)−L2C(S) relates to the cor-
responding change DVC according to:

(iiœ) DL2C ˛
=DVC, if |DVC | [ 4dK,

\ 4dK, if DVC \ 4dK,

[ −4dK, if DVC [ −4dK.

(26)

Now

L=C
y
L1y=C

y
|CKy |

−1L2CKy= C
C ¥ C

L2C, (27)

so that

DxL=DxL2x+DxL
g
x , (28)

where L2x=L2CKx and Lg
x is the sum of a (random) number, between 0

and 2d, of distinct L2C’s corresponding to clusters C ¥ CK with x ¥ C̄0C.
For each such C and each z ¥ C, either DxVz=0 (if ||z−x|| > 1) or
|DxVz | [K (if ||z−x||=1) by (6) and the fact that x and z are in different
percolation clusters so Kx, z [K

g
{x, z} [K. Since x has exactly 2d nearest

neighbors so there are at most 2d sites z other than x with |DxVz | ] 0, we
see that |DxVC | [ 2dK and hence, by (26), DxL2C=DxVC. Summing over
such C’s, we get

Dx(L
g
x)=Dx C

y ¨ CKx

Vy ¥ [−2dK, 2dK]. (29)

If DxL2x=DxVCKx , then DxL=Dx(L
2
x+L2 g

x)=DxH( [ 0) and (iiŒ) is
valid (for any choice of K̄ > 0). If DxL2x ] DxVCKx , then by (iiœ) (and
(29) and the fact that DxH [ 0) we must have DxVCKx [ −4dK and
DxL2x [ −4dK so that by (29)

DxH, DxL [ −4dK+2dK=−2dK; (30)

thus (iiŒ) is valid with K̄=2dK.
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It remains to show that for some choice of (large) K, the finite mean
condition (iŒ) will be valid. Here is where we use the strong percolation
hypothesis. By (23) and (iœ),

E(max
S
|L1x(S)|) [ 4dKE(|S0 | |C̄

K
y |). (31)

Using the crude bound that |C̄Ky 0C
K
y | [ 2d |C

K
y |, we have from (31) that

E(max
S
|L1x(S)|) [ 4dKE(ea |C

K
x |), (32)

with a=(2d+1) ln |S0 |. By the strong percolation hypothesis the right-
hand side of (32) will be finite for K large enough so that the l(K) of the
large deviation bound (8) satisfies l(K) > a. This yields (iŒ) and completes
the proof.
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